

PLL Frequency Synthesizer for Electronic Tuning in Car Audio Systems

Overview

The LC72151V is a PLL frequency synthesizer for car audio systems. It can implement high-performance multifunction tuners such as RDS tuners and features a fast locking circuit.

Functions

- High-speed programmable divider
- FMIN: 10 to 160 MHz : Pulse swallower type
- AMIN: 2 to 40 MHz : Pulse swallower type 0.5 to 10 MHz : Direct division type
- IF counter
- HCTR: 0.4 to 25 MHz : for FM IF count
- LCTR: 10 to 500 kHz : for AM IF count 1.0 to $20 \times 10^{3} \mathrm{~Hz}$: for frequency measurement
- Reference frequency
- One of 11 frequencies may be selected (when a 10.25 or 10.35 MHz crystal is used)
$50,30^{*}, 25,12.5,10,9^{*}, 6.25,5,3.125,3^{*}, 1 \mathrm{kHz}$
Note: Cannot be used when a 10.25 MHz crystal is used
- Phase comparator
- Supports dead band control
- Built-in unlock detection circuit
- Built-in deadlock clearing circuit
- Built-in amplifier for forming an active low-pass filter
- Built-in operational amplifier for FM high-speed locking
- Built-in MOS transistor for AM tuning
- I/O ports - General-purpose I/O: 2 pins
- Four input ports (maximum)
- Three output ports (maximum)
- Serial data I/O
- Supports communication with the controller in the CCB format.
- Operating ranges
— Supply voltage: 4.5 to $5.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}\right)$

$$
7.5 \text { to } 9.5 \mathrm{~V}(\mathrm{AV} \mathrm{DD})
$$

— Operating temperature: -40 to $+85^{\circ} \mathrm{C}$

- Package
- SSOP30

Package Dimensions

unit: mm
3191A-SSOP30

- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

■ Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Pin Assignment

(Top view)

Block Diagram

Specifications
Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}^{\circ} \mathbf{C}, \mathbf{V}_{\text {SS }}=A V_{S S}=0 \mathrm{~V}$

Parameter	Symbol	Pin	Ratings	Unit
Supply voltage	$V_{D D} \max$	V_{DD} *	-0.3 to +6.5	V
		$\mathrm{AV}_{\mathrm{DD}}$ *	-0.3 to +11.0	
Maximum input voltage	$\mathrm{V}_{\text {IN }} 1$ max	CE, CL, DI	-0.3 to +7.0	V
	$\mathrm{V}_{\text {IN }} 2$ max	XIN, FMIN, AMIN, HCTR/I-3, LCTR/I-4, AIN2, TGI1, TGI2, TGO	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
	$\mathrm{V}_{\text {IN } 3 \text { max }}$	I/O-1, I/O-2	-0.3 to +15.0	
	$\mathrm{V}_{\text {IN }} 4$ max	AIN1, AREF	-0.3 to +6.5	
Maximum output voltage	$\mathrm{V}_{0} 1$ max	DO	-0.3 to +7.0	V
	$\mathrm{V}_{\mathrm{O}} 2$ max	XOUT, PDM1, PDM2, PDS, PDF, XBUF, TGI1, TGI2, TGO	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
	$\mathrm{V}_{0} 3$ max	I/O-1, I/O-2, O-3, AOUT2	-0.3 to +15.0	
	$\mathrm{V}_{0} 4$ max	AOUT1	-0.3 to +11.0	
Maximum output current	lo1 max	I/O-1, I/O-2, O-3	0 to 10.0	mA
	lo2 max	DO, TGI1, TGI2, TGO, AOUT1, AOUT2	0 to 5.0	
	Io3 max	XBUF	0 to 3.0	
Allowable power dissipation	Pd max	($\mathrm{Ta} \leq 85^{\circ} \mathrm{C}$)	SSOP30:160	mW
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Power must be applied to $A V_{D D}$ before applying to $V_{D D}$ and $A V_{D D}$ must be higher than or equal to $V_{D D}$.
Capacitors of at least $0.1 \mu \mathrm{~F}$ must be inserted between the $\mathrm{V}_{D D}$ and $V_{S S}$, and between the $A V_{D D}$ and $A V_{S S}$ power supply pins.

Allowable Operating Ranges at $\mathrm{Ta}=-\mathbf{4 0}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{A V _ { S S }}=0 \mathrm{~V}$

Parameter	Symbol	Pin	Conditions	Ratings			Unit
				min	typ	max	
Supply voltage	$\mathrm{V}_{\mathrm{DD}} 1$	V_{DD}	$\mathrm{V}_{\mathrm{DD}} \leq \mathrm{AV} \mathrm{V}_{\mathrm{DD}}$	4.5		5.5	V
	$\mathrm{V}_{\mathrm{DD}} 2$	$\mathrm{AV}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}} \leq \mathrm{AV}_{\mathrm{DD}}$	7.5	8.5	9.5	
	$\mathrm{V}_{\mathrm{DD}} 3$	V_{DD}	Serial data retention voltage	2.0			
High-level input voltage	$\mathrm{V}_{\mathrm{H} 1} 1$	CE, CL, DI		$0.7 \mathrm{~V}_{\mathrm{DD}}$		6.5	V
	$\mathrm{V}_{\mathrm{IH}}{ }^{2}$	I/O-1, I/O-2		$0.7 \mathrm{~V}_{\text {DD }}$		13	
	$\mathrm{V}_{1 \mathrm{H}^{3}}$	HCTR/I-3, LCTR/I-4		$0.7 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	
Low-level input voltage	$\mathrm{V}_{\text {IL }} 1$	$\begin{aligned} & \text { CE, CL, DI, } \\ & \text { I/O-1, I/O-2, } \\ & \text { LCTR/I-4 } \end{aligned}$		0		$0.3 \mathrm{~V}_{\text {D }}$	V
	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	HCTR/I-3		0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO		0		6.5	V
	$\mathrm{V}_{\mathrm{O}} 2$	AOUT1		0		9.5	
	$\mathrm{V}_{\mathrm{O}} 3$	$\mathrm{I} / \mathrm{O}-1, \mathrm{I} / \mathrm{O}-2, \mathrm{O}-3,$ AOUT2		0		13	
Input frequency	fiN^{1}	XIN	$\mathrm{V}_{\text {IN }}{ }^{*}+1$	7		11	MHz
	fin^{2}	FMIN	$\mathrm{V}_{\mathbf{I N}} 2 * 1$	10		160	
	fin^{3}	AMIN (SNS=1)	$\mathrm{V}_{\mathbb{1}} 3$ *1	2		40	
	fin^{4}	AMIN (SNS=0)	$\mathrm{V}_{\text {IN }} 4 * 1$	0.5		10	
	fin^{5}	HCTR/I-3	$\mathrm{V}_{\text {IN }}{ }^{*}{ }^{1}$	0.4		25	
	fin 6	LCTR/I-4	$\mathrm{V}_{\text {IN }} 6 * 1$	10		500	kHz
	fiN^{7}	LCTR/I-4	$\mathrm{V}_{\mathrm{IN}} 7$ *2	1.0		20×10^{3}	Hz

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin	Conditions	Ratings			Unit
				min	typ	max	
Input amplitude	$\mathrm{V}_{\text {IN }} 1$	XIN	fin^{1}	200		1500	mVrms
	$\mathrm{V}_{\text {IN }}$ 2-1	FMIN	$\mathrm{f}=10$ to 50 MHz	40		1500	
	$\mathrm{V}_{\text {IN }}$ 2-2	FMIN	$\mathrm{f}=50$ to 130 MHz	20		1500	
	$\mathrm{V}_{\text {IN }}$ 2-3	FMIN	$\mathrm{f}=130$ to 160 MHz	40		1500	
	$\mathrm{V}_{\text {IN }} 3$	AMIN (SNS=1)	fin^{3}	40		1500	
	$\mathrm{V}_{\text {IN }} 4$	AMIN (SNS=0)	fin^{4}	40		1500	
	$\mathrm{V}_{\text {IN }} 5-1$	HCTR/I-3	$\mathrm{f}=0.4$ to $25 \mathrm{MHz} * 3$	40		1500	
	$\mathrm{V}_{1 \times} 5-2$	HCTR/I-3	$\mathrm{f}=8$ to $12 \mathrm{MHz} * 4$	70		1500	
	$\mathrm{V}_{\text {IN }} 6$-1	LCTR/-4	$\mathrm{f}=10$ to $400 \mathrm{kHz} * 3$	40		1500	
	$\mathrm{V}_{\text {IN } 6-2}$	LCTR/-4	$\mathrm{f}=400$ to $500 \mathrm{kHz} * 3$	20		1500	
	$\mathrm{V}_{\text {IN } 6-3}$	LCTR/-4	$\mathrm{f}=400$ to $500 \mathrm{kHz} * 4$	70		1500	
Guaranteed crystal oscillator frequency ranges	X'tal	XIN, XOUT	*5	10.25		10.35	MHz

Notes: 1. Sine wave with capacitor coupled.
2. Pulse wave with DC coupled.
3. Serial data: $C T C=0$
4. Serial data: $C T C=1$
5. Recomended CI value for the crystal oscillator: $\mathrm{CI} \leq 70 \Omega$

The circuit constants for the crystal oscillator circuit depend on the crystal used, the printed circuit board pattern, and other items.
Therefore we recommend consulting with the manufacturer of the crystal for evaluation and reliability.
Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Pin	Conditions	Ratings			Unit
				min	typ	max	
Internal feedback resistance	Rf1	XIN			1		$\mathrm{M} \Omega$
	Rf2	FMIN			500		k Ω
	Rf3	AMIN			500		
	Rf4	HCTR/I-3			500		
	Rf5	LCTR/-4			500		
Internal pull-down resistance	Rpd1	FMIN		50	100	300	$\mathrm{k} \Omega$
	Rpd2	AMIN		50	100	300	
Hysteresis	$\mathrm{V}_{\text {HIS }}$	CE, CL, DI, LCTR/I-4			$0.1 \mathrm{~V}_{\mathrm{DD}}$		V
High-level output voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	PDM1, PDM2, PDS, PDF	$\mathrm{l}_{0}=-1 \mathrm{~mA}$	$V_{D D}-1.0$			V
			$\mathrm{l}_{0}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-2.0$			
	$\mathrm{V}_{\mathrm{OH} 2}$	AOUT1	$\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$	$\mathrm{AV}_{\mathrm{DD}}-1.0$			
	$\mathrm{V}_{\mathrm{OH}}{ }^{3}$	XBUF	$\mathrm{I}_{\mathrm{O}}=-0.5 \mathrm{~mA}$	$V_{D D}-1.5$			
Low-level output voltage	$\mathrm{V}_{\text {OL }} 1$	PDM1, PDM2, PDS, PDF	$\mathrm{I}^{\prime}=1 \mathrm{~mA}$			1.0	V
			$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$			2.0	
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	AOUT1	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	
	$\mathrm{V}_{\text {OL }}{ }^{\text {a }}$	XBUF	$\mathrm{l}_{\mathrm{O}}=0.5 \mathrm{~mA}$			1.5	
	$\mathrm{V}_{\text {OL }} 4$	I/O-1, I/O-2, O-3	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.2	
			$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			1.0	
			$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$			1.6	
		DO	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.2	
			$\mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA}$			1.0	
	$\mathrm{V}_{\text {OL }} 6$	AOUT2	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{AIN2}=1.3 \mathrm{~V}$			0.5	
High-level input current	$\mathrm{l}_{\mathrm{H}} 1$	CE, CL, DI	$\mathrm{V}_{1}=6.5 \mathrm{~V}$			5.0	
	IHH^{2}	I/O-1, I/O-2	$\mathrm{V}_{1}=13 \mathrm{~V}$			5.0	
	$\mathrm{l}_{1 \mathrm{H}^{3}}$	HCTR/I-3, LCTR/I-4	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$			5.0	$\mu \mathrm{A}$
	${ }_{1 H} 4$	XIN	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	0.11		0.9	
	${ }_{1 / 4} 5$	FMIN, AMIN, HCTR/I-3, LCTR/I-4	$V_{1}=V_{D D}$	1.8		15	
	1н6	AIN1, AREF	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		0.01	100	nA
	$\mathrm{l}_{1 \mathrm{H}} 7$	TGI1, TGI2, TGO	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$			3.0	$\mu \mathrm{A}$

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin	Conditions	Ratings			Unit
				min	typ	max	
Low-level input current	$l_{\text {IL }} 1$	CE, CL, DI	$\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{\text {2 }}$	I/O-1, I/O-2	$\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	
	IIL3	HCTR/I-3, LCTR/I-4	$\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	
	$\mathrm{l}_{\text {IL }} 4$	XIN	$\mathrm{V}_{1}=0 \mathrm{~V}$	0.11		0.9	
	I/L5	FMIN, AMIN, HCTR/I-3, LCTR/l-4	$\mathrm{V}_{1}=0 \mathrm{~V}$	1.8		15	
	IIL6	AIN1, AREF	$\mathrm{V}_{1}=0 \mathrm{~V}$		0.01	100	nA
	$\mathrm{I}_{\text {IL }} 7$	TGI1, TGI2, TGO	$\mathrm{V}_{1}=0 \mathrm{~V}$			3.0	$\mu \mathrm{A}$
Analog switch on resistance	RON	TGI1, TGI2, TGO	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=8.5 \mathrm{~V}, \mathrm{I}= \pm 3 \mathrm{~mA}, \\ & \mathrm{~A} \mathrm{~V}_{\mathrm{DD}}=8.5 \mathrm{~V} \end{aligned}$		70	140	Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}= \pm 3 \mathrm{~mA}, \\ & \mathrm{AV}_{\mathrm{DD}}=8.5 \mathrm{~V} \end{aligned}$		50	100	
			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \mathrm{I}= \pm 3 \mathrm{~mA}, \\ & \mathrm{AV} \mathrm{~V}_{\mathrm{DD}}=8.5 \mathrm{~V} \end{aligned}$		70	140	
Output off leakage current	loff1	AOUT1	$\mathrm{V}_{\mathrm{O}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	loff2	I/O-1, I/O-2, O-3, AOUT2	$\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$			5.0	
	loff3	DO	$\mathrm{V}_{\mathrm{O}}=6.5 \mathrm{~V}$			5.0	
High-level 3-state off leakage current	l	PDM1, PDM2, PDS, PDF	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$		0.01	200	nA
Low-level 3-state off leakage current	loffL	PDM1, PDM2, PDS, PDF	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		0.01	200	nA
Input capacitance	$\mathrm{C}_{\text {IN }}$	FMIN			6		pF
Supply current	$\mathrm{I}_{\mathrm{DD}} 1$	$V_{D D}$	$\begin{aligned} & \hline \text { X'tal }=10.35 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN} 2}=160 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN} 2}=40 \mathrm{mVrms} \end{aligned}$		10	18	mA
	IDD^{2}	$V_{D D}$	PLL block stopped (PLL INHIBIT) X'tal OSC operating (X'tal = 10.35 MHz)		0.5	1.5	
	$\mathrm{IDD}^{\text {3 }}$	$\mathrm{AV}_{\mathrm{DD}}$	PLL block stopped (PLL INHIBIT) X'tal OSC stopped On-chip op-amp stopped			1.5	
	IDD4	$V_{\text {DD }}$	PLL block stopped (PLL INHIBIT) X'tal OSC stopped On-chip op-amp stopped			10	$\mu \mathrm{A}$

Pin Functions

Pin No.	Symbol	Usage	Function	Pin circuit
30 1	$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	X'tal OSC	- Crystal oscillator connection. (10.25 or 10.35 MHz)	
8	FMIN	Local oscillator signal input	- FMIN is selected by setting DVS in the control data to 1 . - Enters high-speed locking mode by setting SNS in the control data to 1. - Enters normal mode by setting SNS in the control data to 0 . - Input frequency: 10 to 160 MHz - The signal is transmitted to the swallow counter. - The divisor can be set to a value in the range 272 to 65,535 .	
9	AMIN	Local oscillator signal input	- AMIN is selected by setting DVS in the control data to 0 . - When SNS in the control data is set to 1 : Input frequency: 2 to 40 MHz The signal is directly transmitted to the swallow counter. - When SNS in the control data is set to 0 : Input frequency: 0.5 to 10 MHz The signal is directly transmitted to the 12-bit programmable divider. The divisor can be set to a value in the range 5 to 4,095 .	
29	CE	Chip enable	- This pin must be set to the high level when inputting serial data to the LC72151V DI pin and when outputting serial data from the DO pin.	
28	DI	Input data	- Serial data input for transferring data from the controller to the LC72151V.	
27	CL	Clock	- Data synchronization clock signal used when inputting serial data to the LC72151V DI pin and when outputting serial data from the DO pin.	
26	DO	Output data	- Serial data output for transferring data from the LC72151V to the controller.	
6	$V_{D D}$	Power	- LC72151V power supply. A voltage in the range 4.5 to 5.5 V must be provided when the PLL circuit is operating. - The power-on reset circuit operates when power is first applied. Note: Power must be applied to $A V_{D D}$ before applied to $V_{D D}$ and $A V_{D D}$ must be higher than or equal to $V_{D D}$.	-
7	$\mathrm{V}_{S S}$	Ground	- LC72151V ground.	
2 3	$\begin{aligned} & \text { I/O-1 } \\ & \text { I/O-2 } \end{aligned}$	I/O ports	- Input/output dual function pins - The function will be selected according to IOC1 and IOC2 in the control data. Data $=0$: Input port 1: Output port - When specified as an input port: The input pin state is transmitted to the system microcontroller from DO pin. Input state = Low: data is 0 $=$ High: data is 1. - When specified as an output port: The output state will be determined according to $\mathrm{I} / \mathrm{O}-1$ and $\mathrm{I} / \mathrm{O}-2$ in the control data. $\begin{aligned} \text { Data } & =0: \text { Low } \\ & =1: \text { Open } \end{aligned}$ - These pin function as an input port at a power-on reset.	

Continued on next page.

Continued from preceding page.

Pin No.	Symbol	Usage	Function	Pin circuit
5	O-3	Output port	- Dedicated output pin - Latches OUT3 in the control data and outputs data from O-3 pin. - This pin goes open state at a power-on reset.	
$\begin{aligned} & 19 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	AIN1 AREF $A V_{D D}$ $\mathrm{AV}_{\mathrm{SS}}$ AOUT1	Op-amp for low-pass filter amp	- Op-amp for PLL active low-pass filter - $\mathrm{AV}_{\mathrm{SS}}$ is the analog system ground pin shared with low-pass filter Nch MOS transistor. - Voltage applied to AREF pin must be $1 / 2$ that to $V_{D D}$ pin. Note: Power must be applied to $A V_{D D}$ before applied to $V_{D D}$, and $A V_{D D}$ must be higher than or equal to $V_{D D}$.	
$\begin{aligned} & 24 \\ & 25 \end{aligned}$	AIN2 AOUT2	Transistor for low-pass filter amp	- PLL active low-pass filter Nch MOS transistor - Source of the transistor is connected to $\mathrm{AV}_{\mathrm{SS}}$ pin. Note: Connect $\mathrm{AV}_{\mathrm{SS}}$ pin to ground in use.	
$\begin{aligned} & 21 \\ & 23 \\ & 20 \end{aligned}$	PDM1 PDM2 PDS	Charge pump output	- PLL charge pump output When the frequency created by dividing the local oscillator signal frequency by N is higher than the reference frequency, a high level is output from the PD pin. When lower, a low level is output. The PD pin goes to the high-impedance state when the frequencies match.	
22	PDF	PLL high-speed locking charge pump output	- PLL high-speed locking charge pump output When the high-speed locking mode is selected, signal pulses is output according to the frequency variation. This pin enters highimpedance state when the local oscillation frequency enters the set frequency range.	
$\begin{aligned} & 18 \\ & 17 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { TGl1 } \\ & \text { TGI2 } \\ & \text { TGO } \end{aligned}$	PLL high-speed locking TG	- PLL high-speed locking active low-pass filter transmission gate input/output dual function pins Note: Connect $\mathrm{AV}_{\mathrm{SS}}$ pin to ground in use.	
10	HCTR/-3	General-purpose counter	- HCTR is selected by setting CTS1 in the control data to 1. Input frequency: 0.4 to 25 MHz The signal is input to a divide-by-2 circuit and the result is input to a general-purpose counter. This counter can also be used as an integrating counter. The counter value is output as the result of the count, MSB first, from the DO pin. There are four measurement periods: $4,8,32$, and 64 ms . - When $\mathrm{H} / \mathrm{l}-3$ in the control data is set, this pin functions as an input port, and the value is output from the output pin DO.	
11	LCTR/-4	General-purpose counter	- LCTR is selected by setting CTS1 in the control data to 1. - When the LCTR is selected as described above and CTS0 is set to 1 : This pin enters the frequency measurement mode. Input frequency: 10 to 500 kHz The signal is directly transmitted to the general-purpose counter. - When CTSO is set to 0 This pin enters period measurement mode. Input frequency: 1 Hz to 20 kHz Period can be measured either in single period or in double period. If double period measurement is selected, the frequency is 2 Hz to 40 kHz . The counter value is output as the result of the count, MSB first, from the DO pin. - When L/I-4 in the control data is set: This pin functions as an input port, the value is output from the output pin DO.	

Continued from preceding page.

Pin No.	Symbol	Usage	Function	Pin circuit
4	XBUF	Crystal oscillator buffer		

Serial Data I/O Methods

Data is input to and output from the LC72151V using the Sanyo CCB (Computer Control Bus) format, which is the serial bus format used by SANYO audio ICs. This IC adopts a CCB format with an 8-bit address.

DI control data (serial data input) structure

(1) IN1 mode

(2) IN2 mode

DI control data description

Continued from preceding page.

Continued on next page.

Continued from preceding page.

No.	Control block/data	Content	Related data
(5)	General-purpose counter control data CTS0, CTS1 CTE GT0, GT1 CTP CTC	- Selects the general-purpose counter input pins (HCTR, LCTR). - General-purpose counter measurement start data $C T E=1$: Starts the counter. $C T E=0$: Resets the counter. - Determines the measurement time (frequency mode) and number of periods (period mode). - When CTE $=0$, input pull-down is disabied by setting CTP to 1 Note: Wait time: 1 to 2 ms . However, CTP must be set to 14 ms before CTE is set to 1 . - The input sensitivity is reduced when CTC is set to 1 . (Sensitivity: 10 to 30 mV rms) *: Refer to the General-purpose counter stracture on page 22 for details.	
(6)	I/O port control data $\mathrm{IO}-1, \mathrm{I} / \mathrm{O}-2$	- Data that specifies the I/O direction of the I/O ports (I/O-1, I/O-2). [Data] = 0: Input port 1: Output port *: After the power-on reset, the I/O-1 and I/O-2 are set up as input ports.	OUT1, OUT2
(7)	Output port data OUT1 to OUT3	- Data that determines the output from output ports O-1 to O-3. [Data] = 0: Open 1: Low *: Invalid when the corresponding port is set up as an input port. *: At a power-on reset, open state is selected by selling the data to 0	I/O-1, I/O-2
(8)	General-purpose counter control data H/I-3, L/I-4	- Data that switch the function between general-purpose counter and input port. $\begin{aligned} \mathrm{H} / \mathrm{I}-3= & 0: \mathrm{I}-3 \text { (input port) } \\ & 1: \mathrm{HCTR} \text { (gereal-purpose counter) } \\ \mathrm{L} / \mathrm{I}-4= & 0: \mathrm{I}-4 \text { (input port) } \\ & 1: \text { LCTR (gereal-purpose counter) } \end{aligned}$	CTS0, CTS1

Continued on next page.

Continued from preceding page.

Continued on next page.

Continued from preceding page.

No.	Control block/data	Content	Related data
(13)	High-speed locking charge wait time control data CWS0, CWS1	- Data to control the wait time in the high-speed locking. This data is valid when the FMIN (high-speed mode) is selected by setting DVS and SNS to 1. *:The wait time is $20 \mu \mathrm{~s}$ at a power on reset. Refer to Description of the High-Speed Locking Control System (P.19) for details.	$\begin{aligned} & \text { DVS } \\ & \text { SNS } \end{aligned}$
(14)	High-speed locking completion flag output wait time control data HSE0, HSE1	- Data to control the wait time after the high-speed locking control completes till the operation is switched to the normal PLL operation. This data is valid when the FMIN (high-speed mode) is selected by setting DVS and SNS to 1 . During the wait time, the unlock signal is forcibly output, the sub-charge pump allows to be operated. Thereby, reduces the locking time after switching to the normal PLL operation. *:The wait time is $400 \mu \mathrm{~s}$ at a power on reset. Refer to Description of the High-Speed Locking Control System (P.19) for details.	DVS SNS PDC0 PDC1
(15)	IC test data TESTO TEST1 TEST2 TEST3	- IC test control data These bits must be set as follows during normal operation. $\begin{aligned} & \text { TEST0 }=0 \\ & \text { TEST1 }=0 \\ & \text { TEST2 }=0 \\ & \text { TEST3 }=0 \end{aligned}$ *: After the power-on reset, the test data is all set to zero. \dagger	
(16)	Reset RST	- This data resets the LC72151V. *: After the power is first applied, the power-on reset circuit initializes the IC. However, the data must be set to 1 to ensure the initialization.	
(17)	DNC	- Set data to 0	
(18)	Crystal oscillator circuit XS XB	- Crystal oscillator selection data $\begin{aligned} \mathrm{XS} & =0: 10.25 \mathrm{MHz} \\ & =1: 10.35 \mathrm{MHz} \end{aligned}$ - Crystal oscillator buffer (XBUF) $X B=0$: Buffer output is turned off. $X B=1$: Buffer output is turned on. *: $\mathrm{XB}=0$: Buffer output is turned off at a power-on reset.	R0 to R3

\dagger Note: After power is first applied, the power-on reset circuit initializes the IC. However, the CCB data (RST) must be input to the IC to ensure the initialization.

Structure of the DO Output Data (serial output data)

(3) OUT mode

No.	Control block/data	Content	Related data
(1)	I/O port data 14 to I1	- The bits I1 to I4 are set to the latched states of the I/O pins I/O-1 and I/O-2 and the input pins HCTR/l-3 and LCTR/I-4. These states are latched at the point the IC enters data output mode. The pin states are latched regardless of the pin mode (input or output). $\left.\begin{array}{l}\mathrm{I} 1, \mathrm{I} 2 \leftarrow \mathrm{I} / \mathrm{O}-1 \text { and } \mathrm{I} / \mathrm{O}-2 \text { pin states } \\ \mathrm{I} 3, \mathrm{I} 4 \leftarrow \mathrm{HCTR} / \mathrm{l}-3 \text { and LCTR/I-4 pin states }\end{array}\right] \quad$ Pin state $=\begin{aligned} & \text { high: } 1 \\ & \text { low: } 0\end{aligned}$	I/O-1 I/O-2 H/I-3 L/I-4
(2)	PLL unlock data UL	- Data created by latching the value for the unlock detection circuit UL \leftarrow 0: Unlocked 1: Locked or in detection halt mode	ULO UL1
(3)	IF counter binary counter C19 to C0	- Data created by latching the value for the IF counter (20-bit binary counter) C19 \leftarrow MSB of the binary counter $\mathrm{CO} \leftarrow \mathrm{LSB}$ of the binary counter	CTE GTO GT1

Serial data input (IN1/IN2) $\quad \mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}},>0.45 \mu \mathrm{~s} \quad \mathrm{t}_{\mathrm{LC}}<0.45 \mu \mathrm{~s}$
(1) CL: Normally high

(2) CL: Normally low

Serial data output (OUT) $\quad \mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}}>0.45 \mu \mathrm{~s} \quad \mathrm{t}_{\mathrm{DC}}, \mathrm{t}_{\mathrm{DH}}<0.2 \mu \mathrm{~s}$
(1) CL: Normally high

(2) CL: Normally low

Note: The DO pin is an n-channel open drain output, and thus the data switching time will differ depending on the value of the pull-up resistor used and the printed circuit board capacitance.

Serial data timing

<When CL is stopped at the low level>

<When CL is stopped at the high level>

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Pin	Conditions	Ratings			Unit
				min	typ	max	
Data setup time	tsu	DI, CL		0.45			$\mu \mathrm{s}$
Data hold time	$t_{\text {HD }}$	DI, CL		0.45			$\mu \mathrm{s}$
Clock low-level period	t_{CL}	CL		0.45			$\mu \mathrm{s}$
Clock high-level period	t_{CH}	CL		0.45			$\mu \mathrm{s}$
CE wait time	$t_{\text {EL }}$	CE, CL		0.45			$\mu \mathrm{s}$
CE setup time	tes	CE, CL		0.45			$\mu \mathrm{s}$
CE hold time	t_{EH}	CE, CL		0.45			$\mu \mathrm{s}$
Data latch change time	tLC					0.45	$\mu \mathrm{s}$
Data output time	$t_{\text {DC }}$	DO, CL	Depends on the value of the pull-up resistor used.			0.2	$\mu \mathrm{s}$
	$t_{\text {DH }}$	DO, CE					

[^0]
Description of the High-Speed Locking Control System

The LC72151V realizes the maximum inter-band edge high-speed locking time $500 \mu \mathrm{~s}$ by optimizing the filter constants and internal status setting when the FMIN (high-speed mode) by setting DVS and SNS to 1 . The following describes the high-speed locking control system.

Procedure

The LC72151V operates as shown below when selecting FMIN (high-speed mode) and setting sub-charge pump operation during unlocked.

Control Data

Setting data (CCB) necessary for the new high-speed locking control is described below.
This data is valid when the FMIN (high-speed mode) is selected by setting DVS and SNS to 1.

CCB data	Name (Selectable set value)	Description	Recommended value
TLR0/TLR1	High-speed locking convergence range $(\pm 50 / 100 / 150 / 200 \mathrm{kHz})$	The new high-speed locking control controls the convergence of the target frequency into the set frequency range. This data can be used to set the frequency range for convergence judgement. *: As the convergence range narrower, the locking time tends to be shorter.	$\begin{aligned} & \text { TLR0 }=0 \\ & \text { TLR1 }=0 \\ & (\pm 50 \mathrm{kHz}) \end{aligned}$
CWS0/CWS1	High-speed locking charge wait time $\text { (0/2.5/5/10 } \mu \mathrm{s} \text {) }$	During the new high-speed locking control, charge application from the PDF pin and local oscillation frequency measurement for the FMIN pin are repeatedly implemented. This data can be used to set the Vt voltage stable time after the charge is applied until the local oscillator frequency is measured. *: Voltage stable time Vt changes according to the peripheral circuit.	$\begin{gathered} C W S 0=1 \\ C W S 1=0 \\ (5 \mu \mathrm{~s}) \end{gathered}$
HSE0/HSE1	High-speed locking completion flag output wait time $\text { (0/100/200/400 } \mu \mathrm{s})$	After the new high-speed locking control ends, since the phase remains in convergence state in the internal unlock detection circuit until the locking judgement is implemented, the sub-charge pump will not operate by the sub-charge pump operation setting during unlocked. This data can be used to set the time to force the sub-charge pump to operate for after the new high-speed locking control completes. *: After the new high-speed locking control completes, the locking time tends to be shortened by operating the sub-charge pump for an adequate time.	$\begin{gathered} \text { HSEO }=0 \\ \text { HSE1 }=1 \\ (400 \mu \mathrm{~s}) \end{gathered}$

[^1]
Block Diagram

Charge Pump Structure

PDC1	PDC0	PDS(Sub-charge pump state)
0	$*$	High impedance
1	1	Charge pump operating (at all times)
1	0	Charge pump operating (when PLL unlocked)

DLC	PDM1, PDM2, PDS
0	Normal operation
1	Forced low

Note: If the unlock state is detected when the channel changes, the sub-charge pump (PDS) operates. Since the subcharge pump operates concurrently with the main-charge pump, decrease the time constants for the low-pass filter to accelerate the locking.
However, note that when the FMIN (high-speed mode) is selected and when the channel changes (during highspeed locking control), both the main- and the sub-charge pumps do not operate and enter the high impedance state, and forcibly implement an unlock judgement. When locked at a high-speed locking control completion, the output is not extended but locking is instantaneously judged. By selecting sub-charge operation (during unlocked) with FMIN (high-speed mode) selected, the sub-charge pump is forcibly operated to shorten the locking time for the time set by the high-speed locking completion flag output wait time control data (HSE0, HSE1) after switching from high-speed locking control to normal PLL operation.

General-purpose counter structure

Parameter	LCTR period measurement mode check signal frequency		
X'tal OSC	10.25 MHz	10.35 MHz	
		fref $=30,9,3 \mathrm{kHz}$	fref $=$ other than $30,9,3 \mathrm{kHz}$
Check signal	1025 kHz	1030 kHz	1150 kHz

	CTS1	CTS0	Input pin	Measurement mode	Frequency range	Input sensitivity
S1	1	$*$	HCTR	Frequency	0.4 to 25.0 MHz	$40 \mathrm{mVrms} * 1$
S2	0	1	LCTR	Frequency	10 to 500 kHz	$40 \mathrm{mVrms} * 1$
S3	0	0	LCTR	Period	1.0 to $20 \times 10^{3} \mathrm{~Hz}$	(Pulse)

*1: $C T C=0: 40 \mathrm{mVrms}$
$C T C=1: 70 \mathrm{mVrms}$

HCTR: Minimum input sensitivity regulation			
CTC	$0.4 \leq \mathrm{f}<8 \mathrm{MH}]$		
0 (Normal mode)	40 mVrms	$8 \leq \mathrm{f}<12$	$12 \leq \mathrm{f} \leq 25$
1 (Degrade mode)	-	$\begin{array}{c}40 \mathrm{mVrms} \\ (5 \text { to } 15 \mathrm{mVrms})\end{array}$	40 mVrms
$(40 \mathrm{mVrms} 60 \mathrm{mVrms})$			

LCTR: Minimum input sensitivity regulation $\mathrm{f}[\mathrm{MHz}]$		
CTC	$10 \leq \mathrm{f}<400$	$400 \leq \mathrm{f} \leq 500$
0 (Normal mode)	40 mVrms	20 mVrms (1 to 10 mVrms$)$
1 (Degrade mode)	-	70 mVrms $(15$ to 30 mVrms$)$

-: No stipulation (Not guaranteed)
(): Actual value (Reference value)

GT1	GT0	Frequency measurement mode		Period measurement mode
		Measurement time	Wait time	
0	0	4 ms	3 to 4 ms	1 period
0	1	8		
1	0	32	7 to 8 ms	2 periods
1	1	64		

CTC: Input sensitivity select data. Input sensitivity is degraded by setting CTC to 1 .
However, the actual value for HCTR is in the range 40 to 60 mVrms at 10.7 MHz , for LCTR is in the range 15 to 30 mVrms at 450 kHz .

CTP: Input pull-down can be inhibited by setting CTP to 1 .
Set CTP to 14 ms before setting CTE to 1 . Set CTP to 0 when the counter is not used.
Wait time will be reduced to 1 to 2 ms by setting CTP to 1 .

The LC72151V's general-purpose counter is a 20-bit binary counter.
The result of the count operation can be read out MSB first from the DO pin.
The measurement time when the general-purpose counter is used for frequency measurement is set to either $4,8,32$, or 64 ms by the GT0 and GT1 bits. The frequency of the input to the HCTR pin can be measured by determining how many pulses were input to the general-purpose counter during this measurement time.
When the general-purpose counter is used to measure the frequency, the period of the signal input to LCTR pin can be measured by counting the number of check signals input to the general-purpose counter for the one or two periods of the signal input to the LCTR pin.
Reset the general-purpose counter in advance by setting CTE to 0 before starting the counter.
A general-purpose counter count operation is started by setting the CTE bit in the serial data to 1 . The serial data takes effect internally to the LC72151V when the CE pin input level is changed from high to low. The input to the HCTR pin must be provided before the wait time has elapsed after CE was set low.
Next, the result of the general-purpose counter count after the measurement completes must be read out while CTE is still set to 1 . This is because the general-purpose counter is reset when CTE is set to 1 .
Never fail to reset the general-purpose counter before starting the count operation of the general-purpose counter. In addition, the signal input to LCTR pin is directly transmitted to the general-purpose counter.
Note that the signal input to the HCTR pin is first divided by 2 internally to the IC and then input to the general-purpose counter. Therefore, the result of the general-purpose counter count is a value that corresponds to $1 / 2$ of the frequency actually input to the HCTR pin.

When used as an integrating counter

*CTE: $0 \rightarrow$ - Resets the general-purpose counter
$1 \rightarrow\left\{\begin{array}{l}\text { • Starts the general-purpose counter } \\ \bullet \text { Restarts the counter if set to } 1 \text { again. }\end{array}\right.$
In integrating count mode, the count value of the general-purpose counter is accumulated. Care must be taken to handle counter overflow correctly. The count value will be in the range 0_{H} to $\mathrm{FFFFF}_{\mathrm{H}}$.

Other items

(1) Notes on the phase detector dead band

DZ1	DZ0	Dead band mode	Charge pump	Dead band
0	0	DZA	ON/ON	--0 s
0	1	DZB	ON/ON	-0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	++0 s

When the charge pump operates in ON/ON mode, the charge pump generates correction pulses even when the PLL is locked. Here, it is easy for the loop to become unstable, and special care is required in designs that use this mode.
The following problems may occur in ON/ON mode.

- Side bands may be generated due to reference frequency leakage.
- Side bands may be generated due low-frequency leakage due to the envelope of the correction pulses.

When a dead band is present (OFF/OFF mode), the loop will be stable, but it will be harder to acquire a good C / N ratio. On the other hand, with the mode that does not have a dead band (ON/ON mode), it will be easier to acquire a high C/N ratio, but harder to acquire loop stability.
Therefore, the DZA and DZB modes, in which there is no dead band, can be effective if either a high signal-to-noise ratio of 90 to 100 dB in FM reception or an increased pilot margin in AM stereo reception is required.
Inversely, if such a high FM signal-to-noise ratio is not required for FM reception, or an adequate pilot margin can be acquired for AM stereo reception, then the DZC and DZD modes, in which a dead band is present, may be more effective.

Dead zone (dead band) definition

The phase comparator compares fp with the reference frequency (fr) as shown in figure 1 . This circuit outputs a voltage V (A) that is proportional to the phase difference \varnothing as shown in figure 2. However, due to internal delays and other factors, the actual IC is unable to compare small phase differences, and thus a dead zone (B) appears in the output. To achieve a high signal-to-noise ratio in the end product, the dead zone should be as small as possible.

However, in popularly-priced models, there are cases where a somewhat wider dead zone may be easier to work with. This is because in some situations, such as when a powerful signal is applied to the RF input, in popularly-priced models there may be RF leakage from the mixer to the VCC. When the dead zone is narrow, outputs to correct this leakage are output, that output in turn modulates the VCO , and generates a beat signal with the RF.

(2) Notes on the FMIN, AMIN, HCTR/I-3, and LCTR/I-4 pins

The coupling capacitor must be located as close as possible to these pins. A capacitance of approximately 100 pF is desirable.
In particular, if the HCTR/I-3 and LCTR/I-4 pin capacitor is over about 1000 pF , the time required to reach the bias level may become excessive, and incorrect counting may occur due to the relationship with the wait time.
(3) Notes on the IF counting using HCTR/I-3 and LCTR/I-4 pins

When counting the IF frequency, the application microcontroller must test the state of the IF IC SD (station detect) signal, and only if the SD signal is present, turn on the IF counter buffer output and perform an IF count operation. Methods in which auto-search operations are implemented only using the IF count may incorrectly stop at frequencies where no station is present due to leakage from the IF counter buffer.
(4) Using the DO pin

At times other than data output mode, the DO pin can also be used to check for general-purpose counter count operation completion, to output the unlock state detection signal, and to check for changes in the input pins.
Note that the states of the input pins (I/O-1 and I/O-2) can be directly input to the system microcontroller through the DO pin.
(5) Power supply pins

Capacitors of at least $0.1 \mu \mathrm{~F}$ must be inserted between the V_{DD} and $\mathrm{V}_{\text {SS }}$ power supply pins and between $A V_{D D}$ and $A V_{S S}$ to reduce noise.
These capacitors must be located as close to the $V_{D D}$ and $V_{S S}, A V_{D D}$ and $A V_{S S}$ pins as possible.
Additionally, power must be applied to $A V_{D D}$ before applying to $V_{D D}$, and $A V_{D D}$ must be higher than or equal to $V_{D D}$.
(6) Note on power application

After power is first applied, the power-on reset circuit initializes the IC. However, the CCB data RST must be set to 1 to ensure the initialization.
(7) Notes on VCO design

The VCO must be designed so that the VCO oscillation does not stop if the control voltage (Vtune) becomes 0 V . If it is possible for this oscillator to stop, use the charge pump control data (DLC) to forcible set Vtune to VCC temporarily to prevent the PLL circuit from deadlocking. (This function is called a deadlock clear circuit.)

Pin states during a power-on reset

Sample Application Circuit

*: The constants shown are for reference purpose only, but do not guarantee the operation.
Notes: 1 . Power must be applied to $A V_{D D}$ before applying to V_{DD}, and $A V_{D D}$ must be higher than or equal to V_{DD}.
2. AREF is an op-amp reference input voltage pin and must be applied a voltage $1 / 2 \mathrm{~V}_{\mathrm{DD}}$. The applied voltage requires to be applied from another power supply from $V_{D D}$ to prevent affections due to logic system noise or other factors.

LC72151V State Setting Examples

1. In the case of FMRF 87.5 MHz reception ($\mathrm{X}^{\prime} \mathrm{tal}=10.35 \mathrm{MHz} / \mathrm{IF}=+10.8 \mathrm{MHz}$)
$\mathrm{FM} \mathrm{VCO}=98.3 \mathrm{MHz}$
$\mathrm{X}^{\prime} \mathrm{tal}=10.35 \mathrm{MHz}$, fref $=50 \mathrm{kHz} \quad: \mathrm{XS}=1, \mathrm{R} 0=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=0$
FMIN (high-speed mode) selected
: $\mathrm{DVS}=1, \mathrm{SNS}=1$
Dead-zone mode = DZD
: $\mathrm{DZ} 0=\mathrm{DZ} 1=1$
Programmable divider divisor

$$
98.3 \mathrm{MHz} \div 50 \mathrm{kHz}=1966 \rightarrow 07 \mathrm{AE}(\mathrm{Hex})
$$

High-speed locking control conditions
High-speed locking convergence range $= \pm 50 \mathrm{kHz}$

$$
: \operatorname{TLR} 0=\text { TLR1 }=0
$$

High-speed locking charge wait time $=5 \mu \mathrm{~s}$

$$
: \mathrm{CWS} 0=1, \mathrm{CWS} 1=0
$$

High-speed locking completion flag output wait time $=400 \mu \mathrm{~s}: \operatorname{HSE} 0=0$, HSE1 $=1$
Unlock detection width $= \pm 0.43 \mu \mathrm{~s}$
$: \mathrm{UL} 0=0, \mathrm{UL} 1=1$
[IN1]

[IN2]

2. In the case of AMRF 530 kHz reception (X 'tal $=10.35 \mathrm{MHz} / \mathrm{IF}=10.8 \mathrm{MHz}$)
$\mathrm{AM} \mathrm{VCO}=11.330 \mathrm{MHz}$
X 'tal $=10.35 \mathrm{MHz}$, fref $=10 \mathrm{kHz}$
$: \mathrm{XS}=1, \mathrm{R} 0=\mathrm{R} 1=\mathrm{R} 2=0, \mathrm{R} 3=1$
X'tal Buffer ON
: $\mathrm{XB}=1$
AMIN selected
: $\mathrm{DVS}=0, \mathrm{SNS}=1$
Dead-zone mode $=$ DZD
: $\mathrm{DZ} 0=\mathrm{DZ} 1=1$
Programmable divider divisor

$$
11.330 \mathrm{MHz} \div 10 \mathrm{kHz}=1133 \rightarrow 046 \mathrm{D}(\mathrm{Hex})
$$

[IN1]

[IN2]

Locking time (Reference data)

*: Data here are measured using a SANYO evaluation board with the peripheral circuits and state setting shown in the Sample Application Circuit and the LC72151V State Setting Examples.
\square Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.

■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 2002. Specifications and information herein are subject to change without notice.

[^0]: Note: See the timing chart for serial data transfers.

[^1]: *: The recommended values are for reference purpose only, not the guarantee values for the fastest locking time.

